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AbstraC L

-The margina I :.ucces c) t hf, :;e22ve rajl.h IJh - o: . Ui0

freguency-wavenumber ({k~techniqueICs to data is cited-.( from-

the literature. Their ability to resolve signals from t~wo

closely spaced sources is not markedly superior to that. of

ordinary beamforming. Moreover, such nonl inear techn~iques

yield distortLed magnitudes and aziimuths. T~he odinary -k

ýspectrumO is shown to be no more than a 1-signal estimator,

and the high resolution techniques to he but variations of

ta1-signal estimator. In th-is paper thr noin of.the

wavenumber spectrum"1 is set: aside. ¾'j anaiogjy ito the Ic-?i

signal estimator (the ordinary 1-k 'spz-ctruui) a linear P

signal estimator is developed. The high resolving power of

this technique and the fidelity of its estimates .i- demion-

st-rated theoretically and by computer exami-,des bothi real and

synthetic.
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The frequency-wavenumber pk cI rin;, which i s a mu ti -

dimensional equivalent of the ordanar'y fr'e lunc.y 5;.ae:.rum

is used in the sciences for theor•ti.ca.1 arlid ex< -.-Lm enta].

analysis of traveling waves. It was .introduced forna).Iv

into seismology by Burg (5) in an arp.9 ij.cation to dat:,-,

analysis. The ordinary unsmoothed t.h -Ife di(ll"(siollns

is .. frequency-wavenumber spectrum of time series data sampled

- at discrete points in space is given by Th

2-7- A,7 , QA

I. . I ( l

IS 1 I JJ 1; i it:3 E' 1 U r i C 1:eLjr a ri a s -
form of ihe eit time seriesp

•"! 2 .. :; t.H(*, v ec i.o.i wo.•;enumJ)e,-

S;z on S I Iy1 0  1) 0 l

S ': Each Fourier trz -is f orm tern,,m j e,- ,Ii; e I ll o is .ur inLsotJ.dr .

4 For example, the sinusoid for the V\I t rtransform at frequency y

""&. has amplitude A•(i) and phase o (tJ)

(at the center of the time window).

Now • k is the phase del ay, between the origi

L-



Ns: and t'• , of a plane wave z,rriv.in, \1 q t.i57_ ti1'.n, iranth of

the vector K and travel.i.lq t t. . pl s'-c V Ai it.v

V (

So, multiplication of the t. rai,.;ns i w 1. tI , iket e - . k,

:has the effect of advancini i- : :i ... i;'::ns : e (mount

the wave itself had delayed it. Thus t-l.e sunmation in (1

above, is a beam sum, and the - spectrum is just the

frequency domain equivalent of ordi.in•-ary beam scLer.i ng.

When the traveling-wave delays are exactly compensated

for by the beam shifting, i.o., when tle t.oue K of the

signal is selected, the sinusoids add up constructively with

no interference, and the power., is mnXIAIzed. Wi thin
d/

• i -*• certain limits, then, maxima or peaks ( ...- space are

treated as indications of the prc-c.o o1 ..... ,nglan'

waves, and the location and size of the maxima are taken

as estimates of the speed, hearing, FfeOuef('....and eower

of those signals. If more tlian one sig(nal is pres'nt_ or

if there is noise in the data, though exact (IeterminatLions

are no longer possible, the -k soe:tlromis si:ii . us' tel.,

for detecting and estimating signal., agan ,ithin limits.

One of those limitations is .impose,; by thl~e fini t.e width

of the maxima associated with signals. ( g ) 'le case is

analogous to that of the ordinary Irequcency spectrum in

which components are represente.d i-,,, oks ot I inite w.idth.

i] I
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Plane wave signal peaks in the -- specirum have a half-

power width of the order

4-\ k

where Z, X is the width, or aperatLure, of the array of

spatial sample points. (4) If two siqnals in the same

time vindow and frequency band are al.so close enough in

phase velocity and azimuth so their wavenumbers, say k,
and I<Z ,are such:

then their maxima in the -k spectrum are merged and

form a single peak. (23) Thus, because the sensor arrays

are spatially finite their resolving power is finite. Attempts

to increase that power of resolution throug.h data processing

technique have required mathematical schemes to reduce the

width of the lobe of the signal peak (1-3 6-], 17, 19).

However, the straight-forward geometri c apeal of this

approach has proved misleading thus f-ar. In such hybrid

spectra signal lobe-widths indeed have been narrowý,ed

substantially. Nevertheless, when signal pairs approach

each other in the k-plane, resolution still fails as the

separation nears /_A K to wit, t:he lobe ]l iAt:-wi,- h for

the ordinary spectrum. (2, 11, 13, 15, 20).

[ : ' ' l l m • n nnm,,__,,_,_,, ,n _ _____ _ __- ........ ___ ..... __. __



Observations of tIl l nve .Lýtitjiw i •flfl tilO :;Jinirtc Olings of

various nigh-resolut. ion oi:equencv-w;vnuI'er techniques are

cited below.

Lintz (1958) i inds "lh•.-it • I1c i. r ! on 4-k spectral

technique of Haney (1967) dos f_,. :..o in i t • ta!. I y improve the I
capability of a seismic array to detcl iw.ilt.iple time-overlap-

pint events from different azimuths.

Salat and Sax (1-969) expei I tnd the high-resol-

A ution f-i spectrum of Ilaney (19o 7) and th,-at. of Capon (1968)

(1969) no better at resolving two siiitaneously arriving

waves than the ordinary .- k spectrum. NcCowan and Lintz

(19(8) call attention to an unrecoverable diistortion of the

true amplitude spectrum in Haney's technique, and the marked

disadvantage of spurious peaks under certain cont-itions which

they regard as the inevitable result of using a high-gain

procedure.

Seligson (1970) describes conditions under which Capon's

high-resolution technique displays less "angular resolution"

than ordinary beamforming. McDonough (1972) concludes that

variations in amplitude from sensor to sensor may be expected

to produce anomolous behavior in Capon's processor. Of course,

just such variation in amplitude from sensor to sensor will

result precisely because of the presence of two or more signals.

__ _ _ _ ___ _ _ _ _ _ _



McDonouqh offers arouments to show that or(di.nary beamforming

is less susceptible to instability resulting from small signal

modeling errors than all other array processors.

Haney, too, notes that in the procusso:r he describes

(1967) variation in amplitude from sensor-to-sensor could

distort the spectrum beyond recognition. He remedies this

difficulty by forcing the same amplitude upon each input

channel, thus destroying the very amplitude information that

would be indicative of the presence of two or more signals.

Woods (1973) concludes that given favorable conditions,

the resolving power of the maximum-likel.iho-)d f-k spectrum

can be effectiveLy infinite, but, disappointingly offers com-

puter examples on synthetic data in w'hic- the input signal

pairs are well spaced to begin with (they are separated by a

distance of 0.9 of the main-lobe half-width). Cox (1973) also

offers theory suggesting that given arbitrarily high signal-

!]to-noise ratios arbitrarily fine resolution should be possible,

but he does not offer a method.

It may be argued that the limited resolving power of the

several h:ig•h-resolution techniques results from the wavenumber

spectrum being in reality a 1-signal estimator. Indeed, the

ordinary f-k "spectrum" is a least squares estimator for

fitting given data to a single plane wave, a, shown further



~'Z1

on. In routine automated processing of tho LAASA LP data

Mack and Smart (1973) found the ordinary spectrum useful I

for estimating only one signal at a time. B'stimates of a

possible second signal were made by recompuLing the wave-

number spectrum after the first (and larqer) estimate had

been subtracted ftom the data. They call this process st:rip-

• •ping; it is useful, of course, only for estimating signals

"separated by about the reciprocal of the array diameter or

more. At that, such estimates of a pair of signals are not

57 •optimum, but first order approximations.

Properly, the f--h spectrum is defined only for signals

of infinite spaciz•l extent traversing infinitely large arrays.

The effect of a signal of wavenumber is then confined

to the point k. in the spectrum. Approximations to this .4

definition are useful if the dimensions of siqnals and arrays j

are sufficiently large. Failing that, the "spectrum" reduces

l-signa). estimator as noted. While the high-resolution

techniques do attempt to extend the effective array diameter,

they all test the wavenumber space with a 1-signal probe, as

"in the ordinary T-kspectrum.

It is proposed here to set aside the notion of a spec-

trum. Rather we will extend the 1-signal estimator to an

AA -signal estimator thus to permit the simultaneous removal

, -I
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of the effects of one signal from the estimate of another 3

and so achieve ti:ue high-resolution. t the same time, use of

beamforming (in the k -p.anc) t:1 estimate each of the

signals will preserve the stability nnd estimate fidelity of

the ordinary -k spectrum.

In the following discussion a 1-signal least squares

estimator is developed and is identified with the ordinary

4•-k spectrum. Analogy to the 1-signal estimator is used to

develop an M-signal estimator.

ii
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Conventional Frequency-Wavenumber Analysis

T1

In the conventional frequency-wavenumber spectrum

(ordinary or high-resolution) a single plane wave is

hypothesized at each frequency. That model is then tested

over the wavenumber space of interest. One attempts to

[ : minimize the error

-. i-.- z

by varying A and kwhere

Uo are the complex Fourier series terms
(for the given frequency)

Sis the sensor, or channel, index

SN is the total number of sensors

are the location vectors of the
sensors

W A is the complex Fourier series term
for the hypothesized plane wave
(at the given frequency)

is the wavenumber of the hypothetical
plane wave (at that given frequency)

4



1, ,.Iti.IAJ is the I

model, i.e., the hypothesized plane wave.

tI V.Note that also one can write E as

-A
s ince Q-I

For a given k is minimized by setting AtoA

= -'4 ,,,-'

which is shown by the following:

and ÷'C

Then

cfi -C

Take partial derivatives:

I _
i .... I .... ..D,-,, : ( ,,..=-1.,-• lml ll l



I N-Setting

N/

A ,:. i ' 7- L

and A =, - /71 -i -
7I--

SAl ,N'• "=#-

•iiu•. 77= i 7"

-So miimze wvi-, respect

This expression can be separated into 2 parts, thus: t

CA

p -

- -

Thus,

.".... .. . ..- •.•............•....-.-....-,: .--•• '",,--:1-; _ : ">"".

:bY~l!



The second term is the ordinary frequency-wavenumber
spectrum

So,

since 4 is a squared modul.us

and

since it is a sum of squared modujlii.

Similarly-

3 ~Since .

So to minimize d6 one must maximize



becomes exactly zero when

= -A/ J4.
Aj ...

that is, when the data describe a single plane wave exactly.

The smaller is, in a given situation, the

imove likely is the hypothetical plane wave

4 'because the smaller e•CA is, the larger the F-statistic

is for the hypothesis. The F-statistic is given by

ae This single plane wave model is often applied in

Sattempts to analyze a 2-signal case(or a possible 2-signal

'case). In such an analysis each signal is treated as if it

existed by itself, the presence of the other being ignored

with consequent distortion of estimates by mutual interfer- I
ence. This interference can be serious, and if the two

signals are not separated in k -space by at least the half- A

"width of the main lobe of the array response, they are likely

to appear as but one signal, their main lobes having coalesced.

Attempts to improve the performance of the single wave hypo-

thesis (in application to the two signal case) have been

made in which the main lobe of the array response has been

slenderized mathematically by alternative methods of citi-

-o.



mation of the wavenumber spectrum. The object has been to

4i, reduce the main-lobe half-width and so resolve signal pairs 1
which otherwise have coalesced main-lobes indistinguishable

from a signal case. These results have been marginal. In -.

the variu,.,s high-resolution techniques the influence of the

one signal on the analysis of the other has been ignored..

Analysis of possible 2-signal cases calls for a

2-signal model, in particular when the 2-signals are known

(or suspected) to be so close together as to have their main

lobes merged.

As the 1-signal model serves for both the 0- and the

1-signal case, so one might expect a 2-signal model to be

effective in all three cases: 0, 1, or 2-signals.

i

-'

I .. • -' , - , '•-,;•' " " . . • •.:. . . ..
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Multiple Signal Frequency-Wavenumber Analysis

By analogy to the 1-signal mode-l, one would

expect to solve a 2-signal model by minimizing the error

varying A, 7 , and where

is the complex Fourier series

term for the second hypothesized
plane wave (at the same given
frequency)

I -7"is the wavenumber of the hypothe-
tical plane wave (at that same
given frequency)

There are now two signals to solve for:

L e t 41

then H N T*Tii

Again, let

A &4 1 c , Ac

Taking first partial derivatives while noting that

/ and A
0 3 P •C C) -



a nd
Ll M

Setting

-v ! 0C

as in the 1-signal case,

Therefore,

Analogously

In this f orm A and are optimized, that is, they produce

tile minimum value of 45 for any arbitrary pair of and

4.Adopting the notatio~n:

U'

FN5p

one may write simply:



Rearranging to solve A and simultne(ously

P= A + 5bE

Q= AEý4 B

E• i E"i &i
I-I

I EI

A (P-Q E) /(IEE)

S(Q0- P E i-E" E)

Written out at length, 4
UI _,.- _ , / . e

and is similar in form.

Introducing a factor of YN into !_

_ TJ U-A E_5



4 4

N U,

~U +(AA' + 5'
Am A

S1% L

N+ "B

S= N ~~ iJ.. U2U,, - (A 'P4- AP "*) - ( Ds'Qc -t- cQ)

--

(Ai 4-1 (3) 4( ' B'E AEB )

R~earranging the terms~ in

1 •: and recalling that

P= A +BE and 0,) A.- •AE' E3
-(A

4 tA•BE I ' (E~ 3



Further Is titutirng

"A P 3 and X

vz• I- - *-

or, w•t~n out,

mziiuz

C ID

Since 45 is a sum of squares by definition it must

benon-negative everywhere. Therefore the second of the

[2 terms in d above, must always be



i -Thus to minimize •? one must maximize

1.-I

This is the 2-signal test, analogous to the ordinary frequency-

Z •wavenumber spectrum, which is the 1-signal test. However, it

is more convenient to retain the form

A+ _m

¶ This 2-signal F-k "spectrum" then is computed from 3

beams (as the ordinary -kspectrum is computed from 1 beam).

The beams are

SP =U '• the mean of the data transforms
that have beein beamed to k
(one of the two wavenumber
variables),

,Q I. • ft eiij .r.--• the mean of the dat& transforms
e after beaming to k (the

other wavenumber variable),

.h

-- "-N - which is the (complex) array

This 2-signal test is solved as is the ordinary 4-k

spectrum, numerically, by searching the wavenumber space of

_ .... • -. : ;d. 2 T1,?7..777 " .7... :• • .2' .:.:,'. •..... '••,'i: -



interest. Now, however, there are 4 dimensions to search, I

LI
F • over which to test the error criterion.

It is instructive to submit a knowii pair of pure,

noiseless signals to the 2-signal test to illustrate the

function of the elements of the expression: %

Let U, F ''

Beaming them exavt-1.y to k and (since these are known
in this special case),

,. Z. ,+ 2

,\ F

(e +1A1

and

- i -i

FE* + G,
Then

4 = (.P+-QE I- ');,

- ( F+qE -(F E* + G) E)/(O E*) •

-- ( F E - F Eý'E- Q F-)/0.- a•)!

-F(- If)/I-E*.=_ = .4i

"5 FE*+Q -(F-QE)E)/(-E

-.-



-4!

S-- GE-.
Thus

U A

This little exercise clarifies a bit the function of the array

A

response, E, in the signal models A and c

The development of the 2-signal test, of course,

suggests the derivation of a 3-signal test, by analogy:

First, the form of the test would be, analogously,

Introducing the notation

4-1

N NJ

4 and expanding 4 A

4~

(-A -%- e ES

,IT:



{T -e

+(A"*B + A a~ u7 ý

+A

i 7

-(A" P4 RPY

A" A B"

4( 4* ,A *

5N ý "E* 4CEA*z



Now noting that in the 2-signal test .-

-BE A a BE nd

QAE*+ 5 A

IP
• -•- so th at +

,, t I E I E lP E P.Ij

one recognizes that, in the 3-signal test,

P1 A 4 BE,4CE

Q = AE + CE.,

R =AE> B 8E: + C
"-4

and, defining

IE , E,

EE

E, E

A •. E 5 L , etc., orR E3

P(I -E*E3) 4 Q(E*E,,-E) 4 ,(E.,E,-E

J3 [[P (E E3 El*) + Q('- EE) " R 'E, E E z7 .E'Er

C [PP(EE.-EZ)- (E,,~RIEE],
Jeh- = -E? E , -E : F ,-Ea. -4E,• E • , E" E,

F,

M I1-- Nw-•,. .. . -t:. -- -iL " -- : .. . ........... 1....... .



Now rearranging

"U - P U'5*Q 3CR) -A P , E3 1 . CR

- (A+ B E, C E) + --(AE•4 B 4 C E,) +eA (AE" 4 eAlI4C)

and substituting P Q, and R

i !
To minimize 4 , then, one will maximize

I AP4 + BqC*+ CR-

N
the 3-signal test, or 3-signal analog to the conventional,

1-signal frequency-wavenumber spectrum. The function is

composed of 6 beams: P, andR ,the 3 beams of the

data, U,\, andE, E, and 3' the 3 beams of the array T!.-
response. ' -i

Remembering the 1-signal test (conventional -k

spectrum),

I .4
, !ii I

= -~A 0- (UN A k :

we may rewrite it as
N

U* P A'NA

e'a-z

Lk........................................................t-



FT

(snc or

NN
U~ U

t; -UU "AP

• •Thus

-• iis the expression one must maximize in order to minimize
the error. So the spectrum (for the 1-signal, conven.-

AP; spec t e - n

tional, case) is

A and. AP E" • is the 2-signal test,

I and APO E3 C R' is the 3-signal test.
Ir

In the 1-signal test

6I For the 2-signal test

II -_

1.

1 ~~~For the 3-signal test I- 1 a

01 E 3

4". E*iE I EV4 E'



Sirrr~: _______________________________

This formalism makes evident the relationship between the

successive tests. Thus one may extropolate and directly

write 'the expression for the M-signal test in simple, terse

form. For example, the 4-signal test is

AP + BQ*4 CR't+D5'
in hih ~,the sum of the data beamed to yet a 4th pit

[I ~, is introduced into the sequence.. P1  and

and in which

P El'EE
QIE E3E5

AS E-E-*
t etc.1

E, E E4EV,_
and is th ra response at, tihat at

etc.

Note-that the four-signal test is computed from 10

beams; 4 beams of the input, Up\ and 6 of the array response.

In general, the M -signal test requires M beams of input'Idata (U ,and M(-)zbeams on the array response, for a



W-4 7j7

total of M(f'i• + beams to compute the least-squares error

at any point in the 2M-dimensional space. But the beams on

the array response are computed from the same complex trig-

onometric terms that are required for the M beams of the input

data. So the M-signal test requires evaluation of zMN sine -4

and cosine terms to compute the error at any point N is the

number of sensors in the array). Thus the number of trigo-

nometric terms requiring computation increases linearly with

It must be noted that a multiple signal test is not

everywhere well-behaved, but has a singularity. For example,

in the case of the 2-signal test, if

AI!
so that

and

Sis undefined. The value it will take on at

depends on the direction from which . Though this

can, of course, be shown analytically, it is a bit tedious for

repetition here. The contoured map of an example (figure ) i

displays this characteristic graphically. The contoured

function is the 2-signal test

.--. . . . .. ." ... ••• •••••••• •--:• `..••••••;..•. c ... ..... 
.. 

.:• .



total of M('AP" beams to compute the least-squares error

- at any point in the ZM-dimensional space. But the beams on

the array response are computed from the same complex trig-

A onometric terms that are required for the M beams of the input

data., So the M-signal test requires evaluation of zMN sin1e 0
and cosine terms to compute the error at any point (N is the

[V3
number of sensors in the array). Thus the number of trigo-

'1 _ nometric terms requiring computation increases -linearly with -

M.

It must be noted that a multiple signal test is not

everywhere well-behaved, but has a singularity. For example,

in the case of the 2-signal test, if

so that

and

is undefined. The value it will take on at --

LA
depends on the direction from which Though this

can, of course, be shown analytically, it is a bit tedious for

repetition here. The contoured map of an example (figure )
f

displays this characteristic graphically. The contoured

function is the 2-signal test

A P* BQk - - _ __+_



with held fixed as varies over tho plane. Note

that the contour lines all run together at k= k
may range arbitrarily close to but must not

take on that value exactly. The data in this figure consist

of 2 closely spaced signals. The fixed vector, k was

,set at the peak of their merged main lobes. -A

One might dismiss this singularity from practical con-

sideration since signals of identical speed and bearing are

indistinguishable by array methods. The test for 2 signals at

the same wavenumber location is thus unnecessary anyway. But

if the 2-signal test, say, is applied to data composed of only

!if 1 signal, must not both the probe vectors approach The same

-1 point, i.e., the wavenumber location of thb input signal, in

order to merge and reduce the function to the I-signal test?

We have seen that when the data, Uo\, consist of the same

number of signals as that for which one is testing, the

test performs as expected: the error is minimized at the

wavenumber location of those input signals, and the signals 1

are recovered undistorted. Suppose, though, that the 2-signal

4• test, say, is applied to data consisting of just plane wave.

SLet •UA F

• • T, - ~~~U,,-A - '€ er'



in the error expression

We have to maximize

AP*1. BQ*
t - k-

'•P, F e Q- FV
"If k goes to thenI

P=F, QuFE
and

A P-QQV( Ij-E*E)
becomes

A (F-FE*E)/(I-E*E)
and

P G- *PE I E*E) (FE*- FE E)

and

:. -•'• '•: - FCF" = (R r4a
A Ni

When kS goes to tile error is minimized, tile

signal, F is recovered undistorted, and the hypothesized

-second signal vanishes. This solution is invariant though



-,be permitted to range over the entire k-plane,
excepting the point A . Thus the 2-signal test does

not reduce to the ordinary ?k spectrum in the presence

of a single plane wave, and is not required to go to

k nor would the gradient of with respect to 4
lead to k (if one were using a steepest descent technique

to minimize )

:4 7

ii

MN 0 -101



4 ~~Numerical_§Solution of Lhthe Multipe_S1jq L e.6
:--.

One might propose to carry out the numerical solution

of a multiple signal test by a straightforward search of

the entire wavenumber space of interest, as is done in the

computation of the conventional f- k spectrum. But the

multiple signal test may be used in more practical fashion, V

4 •

with greater efficiency, as a follow-up to the ordinary

K spectrum. Since a high-resolution array process

by design is intended to separate signals otherwise unre-

4 solvable, there is sound justification to limit its use to

the vicinity of signals tentatively identified beforehand

by less powerful but faster techniques. This is an advan-

tageous circumstance, since an M-signal test is a function

of ZM dimensions of wavenumber and would otherwise prove

computationally less efficient. Applying the 2 -signal

test to the highest peak of an ordinary 1k spectrum,

then, one hypothesizes the presence of 2 plane waves which

appear as 1 only because of their proximity. By the hypothe-

sis the spectral peak lies within the area of the main lobe

of either signal and thus 4 may be minimized directly by



A the method of steepest descent. This is the procedure used

here.

Since, as has been shown earlier,

-kk
is prohibited, the descent cannot begin from any one single

point in the -plane, as, for example, the peak under con-

sideration. But any pair of points in that vicinity is

suitable; all lead to the same solution. A convenient pair

are (1) the peak, and (2) the adjacent minimum of d with

prespect to, say, ' when 1 is fixed at the peak as in the

previously discussed figure The gradient of 4 is com--

puted at this pair and i itself then recomiuted at a new

location down the gradient. The length of this first step

in the descent is some fraction of the width of the array-

response main-lobe, thus chosen to ensure that the process

does not jump from the vicinity of the solution into the

range of an adjacent relative minimum. The gradient is new-

"- • ly computed at this second location; another somewhat smaller

[ step is taken down the gradient; the gradient is once more

computed, now at this third location, and so forth in suc-

cessively smaller steps until the point is reached in that

4-dimensional space at which the gradient goes to zero.

i=-! •

Itb



Some examples with synthetic data of the LASA LP array

follow.

The north-south half-width of the array-response main-

lobe is about 0.0056 cycle/km. (figure ) In the first
' • U

example the input, Ur,, consists of a signal at 0.0002

cycle/km north, and one at 0.0002 south. Thus the half-

width of the main lobe is more than an order of magnitude

greater than the distance between the signals in the

[ ?plane. The signals are aqual, of unit size, their phase is

equal (at the center of the array), and no noise is present.

The ordinary +" 1 spectrum, showing the merged signals

with resultant solitary main lobe, and looking precisely

like the array rdsponse, is given in figure . With one I

vector fixed at the peak of this main-lobe while the other

ranges the k -plane, 4 appears in the contoured plot

of figure . From this pair of points, i.e., the peak in

Sfigure and the one in figure the descent is begun.•

Its progress and the final result are shown in the computer

bulletin of figure . This best fit precisely recovers

the 2 signals: size, phase, and the wavenumber location to

within less than 0.000005 cycles/km. The wavenumber distance '1
between these 2 signals is only a degree or two of azimuth

for Rayleigh waves.

In the second example, presented in similar format



(f igures and ),the synthetic input consists of a

pair of signals in incoherent noise.

One signal, of unit size and zero phase, is located at

0.002 cycle/km south. Random numbers added to it reduce

the signal-to-noise ratio to 1.. Finally, a very large signal,

100 times the size of the first, is located at 0.002 cycle/km

north. It is opposite in phase to the first one and thus it

interferes destructively with the small signal.

The location of the 2 siqnals, superposed on the array

response, is shown in figure .The distance between them

is 0.7 the main-lobe half-width. The arrow indicates the

A displacement of the smaller signal as recovered by the 2-signal

test. The small signal alone, in the presence of this same

noise sample, emerges with the same displacement (in the ordin-

ary f- ki. spectrum). The steps in the descent to the solu-

tion, are presented in figure .The distortion of amplitude

and phase of the large signal as recovered is about 1 percent;

that of the small signal, less than 5 percent. The incoher-

ent noise, of course, is the source of such distortion as is

present. The modeling process, being linear, separates plane

waves with fidelity, as demonstrated in the first example.

kk1
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